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Abstract

The control of cell fate decisions is vital to build functional organs
and maintain normal tissue homeostasis, and many pathways and
processes cooperate to direct cells to an appropriate final identity.
Because of its continuously renewing state and its carefully organ-
ised hierarchy, the mammalian intestine has become a powerful
model to dissect these pathways in health and disease. One of the
signalling pathways that is key to maintaining the balance
between proliferation and differentiation in the intestinal epithe-
lium is the Notch pathway, most famous for specifying distinct cell
fates in adjacent cells via the evolutionarily conserved process of
lateral inhibition. Here, we will review recent discoveries that
advance our understanding of how cell fate in the mammalian
intestine is decided by Notch and lateral inhibition, focusing on
the molecular determinants that regulate protein turnover, tran-
scriptional control and epigenetic regulation.
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Introduction

Tissue stem cells (SCs) exist in most adult organisms and are gener-

ally defined as cells having self-renewing capacity, as well as the

ability to generate all cell types of a given organ. The cell types

generated must be tailored to the needs of the tissue, and thus cell

progeny are influenced to adopt particular cell fates depending on a

complex interplay of internal and external signals. One of the regu-

latory mechanisms controlling cell fate is lateral inhibition, which

enables differential activation of Notch signalling in neighbouring

cells to generate different cell types. Notch signalling and lateral

inhibition were initially described in Drosophila melanogaster, but

are used throughout metazoan development as well as in adult

organisms to specify cell fate in many tissues (for a historical

perspective, see [1]).

A widely used model system to investigate the signals controlling

cell fate decisions in mammals is the murine intestine. The organisa-

tion of the intestinal epithelium into proliferative crypts that

constantly renew the differentiated cells in the villi presents

researchers with a repeating array of the complete set of stem,

progenitor and differentiated cell types, the majority of which turn

over within a matter of days due to the constant cell death of differ-

entiated cells at the tip of the villi (Fig 1A). This continuous produc-

tion of multiple cell lineages facilitates genetic investigation of the

system, since abnormal proliferation/differentiation phenotypes

rapidly manifest as altered cellular compositions of the crypts and

villi. The balance between self-renewal and differentiation is under

stringent control to allow proper development and avoid uncon-

trolled growth, which can lead to intestinal hyperplasia, inflamma-

tory processes and cancer. In this review, we will focus on how

Notch signalling is regulated by protein turnover of signalling path-

way components, as well as by transcriptional and epigenetic mech-

anisms, to achieve correct specification of cell fates in the

mammalian intestine.

Stem cells and cell fate decisions in the
mammalian intestine

The cellular hierarchy of the intestinal epithelium begins at the crypt

base, the main stem cell niche, which contains the crypt base

columnar (CBC) stem cells (Fig 1A). CBC cells divide daily, produc-

ing rapidly proliferating daughter cells known as transit amplifying

(TA) cells, which fill the crypts and gradually lose their progenitor

identity as they move upwards towards the intestinal lumen. Upon

reaching the crypt–villus junction, TA cells differentiate into the two

main epithelial lineages: the absorptive lineage, which comprises all

enterocytes, and the secretory lineage, which is composed of goblet
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cells (secreting protective mucins) and enteroendocrine cells (secret-

ing hormones like serotonin or secretin) located within the villi, as

well as Paneth cells that are restricted to the bottom of the crypt in

the small intestine (reviewed in [2]) (Fig 1A). Other cell types with

distinct ultrastructures, including tuft cells, M cells and cup cells,

are present in the mature epithelium, but their lineages and func-

tions are less well understood [3] (Fig 1B).

CBC stem cells express the markers Lgr5 (one of a family of

7-transmembrane receptors containing a large leucine-rich extra-

cellular domain) and Olfm4, an extracellular matrix glycoprotein

that is a direct Notch target gene [4–6]. In conditions of normal

epithelial turnover, all cell types of the intestinal epithelium can be

lineage traced back to a CBC cell ([5] and reviewed in [7]). Follow-

ing injury and loss of CBC stem cells, a “reserve” population (or

populations) of cells that reside outside the crypt base may act as

facultative stem cells, moving down to the crypt niche to regenerate

the Lgr5 stem cell pool and repopulate the entire tissue [8,9]

(Fig 1A). Originally identified as Bmi1 positive [9], the unique

identity of this population remains under debate. Unambiguously

identifying non-CBC stem cell populations has been especially diffi-

cult because markers including Lgr5, Bmi1, Lrig1 and HopX are not

exclusive to stem cells [10,11] (Fig 1A). Recent reports suggest that

in the absence of injury, the cells of the “reserve” population

continue as secretory or Paneth cell progenitors, rather than multi-

potent stem cells [12,13]. However, the characteristics of non-CBC

stem cells and their behaviour in conditions of normal homeostasis,

disease and injury are still very active areas of research [12–16].

Unlike stem cells in other tissues such as skin, which divide

asymmetrically to maintain one stem cell at the same time as creat-

ing a progenitor, the CBC stem cells divide symmetrically and only

become TA progenitors when they leave the niche [17,18]. The

signals for maintaining the stem cell fate thus include a cell-extrinsic

component, although the exact sources of these molecular stem cell

niche signals are still not entirely clear. Direct cell–cell contact with

a Paneth cell has been proposed as the stem-cell-maintaining niche

signal [19], but more recent reports show that correct intestinal

epithelial homeostasis can be maintained in the absence of Paneth

cells [20,21]. However, it remains possible that Paneth cells do

provide niche signals in the intact intestine and that alternative

sources of signalling ligands, such as mesenchymal cells, may

compensate when Paneth cells are missing [22].

Progenitor cells outside the crypt base niche occupy the prolifera-

tive transit-amplifying compartment. TA cells continuously migrate

upwards towards the intestinal lumen, forming a dynamic epithelial

“conveyor belt” that replenishes the short-lived enterocytes, goblet

and enteroendocrine cells. On this journey, cells must rapidly decide

whether to continue to proliferate, or to differentiate; differentiating

cells will join the absorptive or the secretory lineage; and differenti-

ating secretory cells can become goblet or enteroendocrine cells

(Fig 1B). Since differentiated Paneth cells reside at the crypt base

and their turnover is very slow compared to other intestinal cell

types, they constitute a special case. Presumptive Paneth cell

progenitors begin to express EphB3 receptors so that they are

repelled by the ephrin ligands further up the crypt and so Paneth

cells remain in the crypt base where they are needed [23]. For the

majority of cells, however, their distance from the crypt base,

measured by a decreasing gradient of Wnt and increasing gradients

of BMP/ephrin ligands [24], is the major factor in controlling

progressive migration and differentiation. Although the early stages

of differentiation towards different lineages begin just a couple of

cells above the stem cell niche (the “+ 5” position [13] or “Common

origin of differentiation” described by Bjerknes and Cheng [25]), the

TA cells retain a degree of plasticity at lower levels in the crypt and

may not fully commit until they reach the crypt–villus junction

(Fig 1A).

Molecular mechanisms controlling intestinal stem cell
fate decisions

The key developmental signalling pathways Wnt and Notch,

conserved throughout multicellular evolution to regulate cell

patterning in many contexts, are used in the adult mammalian

intestine to control the proliferation of stem and progenitor cells

and differentiation of the various cell lineages. Though not the

focus of this review, the Wnt signalling pathway is particularly

important in maintaining the stem and progenitor cell compart-

ments within the intestinal crypts [26,27]. Activating mutations in

this pathway, frequently truncations of the APC gene that indirectly

stabilise the Wnt effector b-catenin, have been found in over 90%

of colorectal cancers [28] and APCmin/+ mice harbouring mutant

APC serve as the most widely used intestinal tumour model in

mammals [29,30]. Activation of the stem cell marker Lgr5 by

R-spondins promotes Wnt signalling [31–33], which activates

transcription of Lgr5 as well as the stem cell transcription factor

Ascl2 [5,34].

There is much crosstalk between the Notch and Wnt pathways

(recently reviewed by Collu et al [35]), and in the intestine this

manifests in different ways in the different compartments. In the

Glossary

ADAM10 a disintegrin and metallopeptidase domain-containing
protein 10

APC adenomatous polyposis coli
ATOH1 atonal homologue 1
BMP bone morphogenetic protein
CBC crypt base columnar cells
CBP CREB-binding protein
CDK cyclin-dependent kinase
DLL4 delta-like 4
DSS dextran sodium sulphate
DUB deubiquitinating enzyme
EphB3 ephrin type-B receptor 3
Fbw7 F-box and WD repeat domain-containing 7
Hes hairy and enhancer of split
Hey hairy/enhancer-of-split related with YRPW motif protein
ISC intestinal stem cell
Itch Itchy E3 ubiquitin protein ligase
Lgr5 leucine-rich repeat-containing G-protein-coupled receptor 5
NICD Notch intracellular domain
Olfm4 olfactomedin 4
PCAF P300/CBP-associated factor
RBPJ-k recombining binding protein suppressor of hairless
SCF Skp, Cullin, F-box containing complex
TA transit amplifying
Usp12 ubiquitin-specific protease 12
Usp28 ubiquitin-specific protease 28
Wnt wingless-related MMTV integration site 1
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stem cell niche, a combination of Wnt and Notch signals is required

for maintenance of the stem cell pool, since without either one of

these the stem cells are lost [36,37]. However, amongst progenitors,

Wnt and Notch activation is more polarised: secretory progenitors

are Wnt high and Notch low, whereas absorptive progenitors are

Wnt low and Notch high (Fig 1B).
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Figure 1. Intestinal homeostasis and Notch signalling in cell fate decisions.
(A) Schematic diagram of the different cell populations in the mouse small intestinal epithelium. In the mammalian small intestine, a crypt and villus represents the
fundamental repetitive unit. Intestinal stem cells (CBCs and +4 cells) and TA (transit amplifying) cells are located in the crypt, and differentiated cells (enterocytes, goblet,
enteroendocrine and tuft cells) are located along the villus. Paneth cells are a special case of differentiated cells, whichmigrate down to the crypt base and reside amongst the
CBC stem cells. (B) Simplified scheme of intestinal cell lineages and differentiation. Notch signalling plays a crucial role in intestinal stem cell and progenitor differentiation.
Notch signalling directly targets the intestinal stem cells (ISCs) tomaintain proliferation and promote cell survival. Notch also acts to promote differentiation to the absorptive
lineage, while the Notch-low state allows differentiation of secretory cells.
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Lateral inhibition and the Notch pathway in cell fate decisions

in the intestine

The Notch cascade has a unique mode of action and has been

recognised as one of a few signalling pathways that are repeatedly

used in multiple developmental processes in embryonic and adult

tissues. The canonical Notch pathway uses juxtacrine cell-to-cell

contact and converts this interaction directly into changes of gene

expression, frequently resulting in opposite fate determinations in

adjacent cells (lateral inhibition). The Notch pathway has been

extensively reviewed elsewhere [38–41] and so will be only briefly

introduced here. Upon binding of the Notch ligand (in mammals,

Delta-like or Jagged) to the Notch receptor at the cell surface, the

receptor undergoes a series of proteolytic cleavages, notably the

shedding of the extracellular portion of the receptor by the metallo-

protease ADAM10 and the release of a cytoplasmic portion by

the gamma-secretase complex. This active fragment, the Notch

intracellular domain (NICD), subsequently translocates to the

nucleus and alters gene expression in complex with several cofac-

tors, notably RBPJk. One of the best characterised groups of NICD

target genes is the Hes (hairy enhancer of split) family that is

upregulated in many different tissue types. The Hes family of tran-

scriptional repressors comprises Hes1, Hes5 and Hes7 proteins and

the related family of the Herp/Hey proteins including Hey1, Hey2

and HeyL [42]. Hes and Hey transcription factors are responsible

for the initiation of an extensive genetic program upon Notch

activation. This program of altered gene expression determines

the final fate of the cell [43]: proliferation in the case of stem/

progenitor cells or differentiation to an absorptive phenotype in the

case of TA cells (Fig 2).

The fate of the cell also depends on the strength of the Notch

signal it receives. The NICD transcriptional program represses genes

encoding the Notch ligands (Delta-like, Jagged), so strong Notch

activation in the receiving cell reduces its ability to activate its

neighbouring cell. Because fate specification is controlled by cell-to-

cell signalling between adjacent cells, this process is referred to as

“lateral cell fate specification” or “lateral inhibition”. At its most

basic, lateral inhibition amplifies and stabilises the stochastic initial

differences in Notch signalling between two equivalent adjacent

cells, rapidly pushing them towards opposite fates [1].

In the intestine, the Notch pathway uses two different mecha-

nisms to achieve its two major roles: (i) negative regulation

prevents the differentiation of stem cells, thereby maintaining the

stem cell pool; and (ii) in binary cell decisions, Notch promotes

differentiation in one direction while suppressing the other possible

SENDING CELL RECEIVING CELL

Notch LOW Notch HIGH

Delta Delta

Notch NICD

NICD Notch

PANETH CELLCBC STEM CELL

CRYPT BASE

Maintenance of 
the stem cell pool

ABSORPTIVESECRETORY

TA COMPARTMENT

Balanced 
absorptive/secretory 
lineages

Atoh1

Hes

Hes

Delta
Delta

Atoh1

Figure 2. Notch and lateral inhibition in ISCs and TA cells.
Notch signalling is initiated when a cell-surface-expressed Delta ligand binds to the Notch receptor expressed on an opposing cell surface. The membrane-tethered Notch is
then cleaved by ADAM10 and then by the c-secretase complex to release the intracellular fragment of Notch (NICD). This translocates to the nucleus and assembles into a
transcriptional activation complex that relieves repression of Notch target genes such as the Hes family. The Hes family of transcriptional repressors controls Delta and a
variety of differentiation/proliferation genes. An important function of the Notch pathway is in lateral inhibition—an interaction between equal adjacent cells that serves to
drive them towards different final states. The basic principle of lateral inhibition is that activation of Notch represses production of the Notch ligand (Delta). Consequently, the
cell with lower Notch activity produces more ligand (a status reinforced by derepression of the transcription factor Atoh1, which directly activates Delta transcription). More
ligand at the cell surface activates Notch signalling in the neighbouring cell which results in reduced ligand production in that cell. This in turn enables the cell with lower
Notch activity to increase its ligand production even further, because it receives a weakened inhibitory signal back from its neighbours. The effect of this feedback loop is that
any initial difference in Notch activity between them, whether stochastic or genetically controlled, is amplified to drive the neighbouring cells into opposite Notch-level status
and hence into different developmental pathways. Notch plays an important role inmaintaining the intestinal stem cell pool: Paneth cells, and perhaps other sources, provide
a constant Notch ligand stimulus to ISCs. In the TA compartment, Notch-high progenitors will differentiate to enterocytes while they will push neighbouring cells to commit
to a secretory fate.
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outcome, thereby controlling the balance between absorptive and

secretory lineages (Fig 2).

Maintenance of the stem cell pool Notch signalling generally

promotes proliferation, and Notch-high cells include the rapidly

cycling CBC stem cells and the absorptive lineage progenitors,

which are more proliferative than those of the secretory lineage.

Mechanistically, Notch activation upregulates Hes transcription

factors, which suppress CDK inhibitor expression [44]. CBC stem

cells receive Notch signalling input from the Delta-like ligands Dll1

and Dll4, which are partly redundant but together are crucial for

stem cell proliferation [45] (Fig 2). Paneth cells within the stem cell

niche express Dll4 and also transiently Dll1 [19,46], although the

finding that Paneth cells are dispensable in vivo [20,21] implies that

other sources of Dll1 and Dll4 may be available. Lineage tracing of

Notch-expressing cells results in the labelling of stem cells followed

by labelling of entire crypt–villus units [45,47]. Inhibiting Notch

signalling by using a gamma-secretase inhibitor, by deleting the

intermediate Notch protease ADAM10 or by combined genetic inac-

tivation of the ligands Dll1 and Dll4 results in downregulation of the

stem cell markers Olfm4 and Lgr5 and loss of CBC stem cells

[6,45,48]. As a result, inhibition of Notch signalling leads to rapid

weight loss and death consistent with a failure of tissue replenish-

ment and lack of nutrient absorption, demonstrating the essential

role of Notch signalling in maintaining the stem cell pool.

Balance between absorptive and secretory lineages While Notch

inhibition is lethal, constitutive activation of Notch signalling in the

intestinal epithelium using a Villin-driven NICD transgene is also

lethal, due to loss of secretory cells [49]. A balance is clearly neces-

sary to ensure that stem cells are maintained and absorptive cells

produced, while allowing the emergence of Notch-low cells that

adopt a secretory fate. The transcription factor responsible for secre-

tory cell fate is Atoh1 (also known as Math1 or Hath1) [50–52]. Hes

factors inhibit Atoh1, and so Notch-high cells are directed away

from the secretory and towards the absorptive lineage [49].

Suppressing Notch signalling results in an increase in secretory

goblet cells at the expense of proliferating cells, as shown by dele-

tion of ADAM10 [48], inhibiting gamma-secretase [53], inactivating

RBPJ [37] or knocking out the Hes genes [43]. These phenotypes

are dependent on Atoh1, since Atoh1 loss restores crypt cell prolifer-

ation and reduces accumulation of secretory cells in a Notch null

background or when Notch signalling is inhibited [54–56].

The capacity of the Notch pathway to rapidly induce different

and mutually exclusive fates in adjacent cells makes it ideally suited

for the division of intestinal progenitor cells into absorptive and

secretory lineages (Fig 2). Committing to the absorptive lineage

does not immediately halt proliferation, while cells committed to

the secretory lineage no longer proliferate, leading to fewer secre-

tory cells overall [46]. The use of Notch signalling and lateral inhibi-

tion to differentiate absorptive and secretory progenitors is broadly

conserved from zebrafish to mammals [57]. Lateral inhibition

ensures that a Notch-high cell (which is skewed towards the absorp-

tive lineage) limits activation of Notch in its neighbouring cells,

which promote secretory differentiation. Lineage tracing of strongly

Dll1-positive (Notch-low) cells [13] and mathematical modelling

[46] support this lateral inhibition pattern of secretory differentia-

tion adjacent to neighbouring absorptive progenitors. Despite the

apparent simplicity of the lateral inhibition model, the underlying

complexity of this conserved process requires exquisite control in

order to maintain the proper homeostasis of the intestine.

Molecular regulation of Notch and lateral inhibition

Lateral inhibition via the Delta-like and Jagged transmembrane

ligands forms the core of cell-extrinsic Notch pathway regulation

and lays the basis for a balanced distribution of absorptive and

secretory cells. Expression of ligand in a neighbouring cell trans-

activates Notch, while co-expression of ligand and receptor in cis

inhibits Notch signalling via Fringe proteins [58,59]. However, there

are also many other cell-intrinsic mechanisms that combine to deter-

mine the level of Notch activation within individual cells (Fig 3).

Ubiquitination

The stability and trafficking of both inactive and active Notch recep-

tors are regulated by ubiquitination. The availability of Notch at the

cell surface is a key determinant of the cell’s capacity for Notch

signalling, and the pathway output also relies on the levels of active

Notch intracellular domain (NICD) available to control transcription

in the nucleus. Notch may also be activated within cells in an endo-

cytic compartment [60], further sensitising the signalling output to

subtle changes in the localisation and protein levels of Notch path-

way components. Ubiquitin-mediated regulation therefore plays a

major role in the levels of Notch signalling in each cell and hence its

fate. Many of the molecular mechanisms involved were initially

characterised in other systems, and their roles in the intestine are

still uncharacterised. Itch (acting together with Numb) and Fbw7

are the best characterised E3 ligases regulating Notch in the

mammalian intestine. Itch regulates trafficking and degradation of

the membrane-bound Notch receptor via the lysosomal pathway,

whereas Fbw7 regulates degradation of cleaved NICD via the protea-

some (Fig 3).

Itch, Numb and Deltex Deltex is a RING-finger E3 ubiquitin ligase

that in Drosophila promotes the late-endosomal activation of Notch

in a ligand-independent manner, probably by mediating its internali-

sation [61]. However, in both Drosophila and mammals, Deltex and

Notch also form a complex with beta-arrestin, which modulates the

ubiquitination and trafficking of the Notch receptor, leading to its

degradation in the lysosome [62,63]. Thus, Deltex can regulate

Notch signalling in either a positive or a negative manner, depend-

ing on its interactions with other regulatory factors.

The HECT family E3 ligase Itch (suppressor of Deltex in Drosophila;

AIP4 in humans) ubiquitinates membrane-bound inactive Notch

receptor, targeting it for lysosomal degradation [64]. Itch interacts

with the endocytic sorting protein Numb, a well-known cell fate

determinant that segregates asymmetrically in dividing cells and

antagonises Notch signalling [65,66]. In human colon cancer cell

lines, Numb promotes the goblet cell phenotype, consistent with its

Notch-antagonising effects [67]. Interestingly, however, Numb was

also reported to be ubiquitously expressed throughout the murine

intestinal epithelium [67], suggesting that there is a further layer of

regulation that can mute this antagonism in Notch-high cells. The

regulation of Notch signalling output by intracellular trafficking is

still a subject of intense research (reviewed in [60]), and the effects
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of most mammalian components of these pathways on intestinal

homeostasis are yet to be clarified.

Fbw7 The F-box protein Fbw7 (also known as Fbxw7, Cdc4, Sel10,

Ago) is part of a multisubunit SCF (Skp1, Cullin1, F-box)-type E3

ubiquitin ligase that targets many oncoproteins for proteasomal

degradation (recently reviewed in [68]). Many of these oncoproteins

are also cell fate determinants that affect the balance between proli-

feration and differentiation within tissues as within tumours. NICD1

was identified as an Fbw7 target more than a decade ago [69–71],

and the phenotype of Fbw7 deficiency often reflects that of

increased Notch signalling. Notably, in the intestine, we and others

have shown that complete inactivation of Fbw7 results in a decrease

in the numbers of goblet cells and an increase in crypt cell prolifera-

tion [72–74]. Interestingly, loss of a single Fbw7 allele also increases

NICD levels and reduces goblet cell numbers [75]. It was found that

Fbw7 is haploinsufficient for Notch degradation in the intestine

(and nervous system) as a consequence of an additional positive

feedback loop between Notch and Fbw7. The Notch downstream

target Hes5 inhibits Fbw7 transcription, thus limiting Notch degra-

dation by Fbw7 when Notch is active [75]. This additional level of

cell-intrinsic regulation ensures that the initially small differences

between a Notch-high progenitor and a Notch-low progenitor estab-

lished by lateral inhibition are drastically augmented, which acceler-

ates the differentiation of the two neighbouring progenitors towards

different fates.

Deubiquitination: Usp12 and Usp28

Ubiquitination is a reversible process that is counter-regulated

by the deubiquitinating enzymes (DUBs). There are nearly 100

encoded DUBs in humans [76]. Of those, the ubiquitin-specific

proteases Usp28 and Usp12 have been shown to regulate Notch

[77,78] (Fig 3). Usp28 counteracts the action of Fbw7 and reduces

ubiquitin-mediated proteasomal degradation of activated Notch

(NICD), resulting in higher NICD levels [77,79]. Consistent with

this modulation of Notch signalling, Usp28 activity regulates the

balance of cell fates within the intestine. Deletion of Usp28 results

in increased numbers of goblet cells and a corresponding decrease

in proliferation [77]. Although Usp28, like Fbw7, also targets other

proteins involved in intestinal epithelial proliferation such as Myc

[80,81], the goblet cell phenotype highly resembles that of Notch

inhibition and is likely due to the stabilising effect of Usp28

on NICD.

On the other hand, deubiquitination of Notch can also promote

its degradation. Deubiquitination of the inactive, uncleaved Notch

receptor by the ubiquitin-specific protease Usp12 promotes its traf-

ficking away from the cell membrane and towards lysosomal degra-

dation [78]. This step is thought to occur after Itch-mediated

polyubiquitination as part of the same trafficking pathway. Loss of

Usp12, part of a family of deubiquitinating enzymes that act

together with the Usp-activating factor UAF1, resulted in increased

Notch activity [78].

Genetic regulation of Notch and lateral inhibition

The correct stoichiometric ratio of the different components of the

lateral inhibition network is important for proper signalling, making

it sensitive to variations in gene dosage and expression. Although

the basic mechanism of lateral inhibition relies on positive feedback

to promote strongly divergent signalling outcomes in adjacent cells,

negative feedback mechanisms are also at play to ensure that the
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Figure 3. Molecular regulation of Notch and lateral inhibition in health and disease.
Cell-intrinsic mechanisms regulate the level of Notch activation within individual cells: ubiquitination (by Deltex/Itch/Fbw7) and deubiquitinating enzymes (Usp28 and
Usp12) control the intracellular levels of Notch; genetic and epigenetic regulation ensures a correct stoichiometry of the Notch signalling components. The regulation of the
Notch pathway maintains proper intestinal homeostasis. When Notch signalling regulators are altered, this can result in an aberrant hyperactivation of the pathway with
severe complications such as intestinal inflammation (due to loss of secretory cells) or overproliferation/tumourigenesis.
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precise level of Notch signalling can be modulated spatially and

temporally. For example, the Hes family of transcription factors

negatively regulate their own transcription, leading to an intrinsic

oscillation of signalling within cells [82]. In the intestine, Hes

factors also seem to be inhibited by their downstream target Atoh1

independently of Notch, since Hes expression was rescued in

Atoh1/Notch double mutants [54]. This rescue of upstream tran-

scription factor expression as well as secretory cell overproduction

with a single transcription factor change suggests that the secretory

lineage “commitment”, although robustly patterned at the outset, is

actually fairly easily reversible. Combined with the observed capac-

ity of committed progenitors for reacquiring stem cell capability

[12,13], this adds a surprising amount of plasticity in lineage selec-

tion (an idea discussed in greater detail by Philpott and Winton

[15]). As will be discussed below, even within a Notch-high state,

considerable variation in transcriptional output is possible via

epigenetic regulation.

Epigenetic regulation of Notch and lateral inhibition

Notch activity depends on the chromatin status of its target genes.

The chromatin serves as a platform to integrate different signals

and enable interplay with other pathways. In a non-activated state,

RBPJ transcriptional complexes are associated with histone demethy-

lases [83], histone deacetylases and histone chaperones that

collectively repress target gene expression. Upon binding of active

NICD, these corepressors are displaced and histone acetylases,

methylases and ubiquitinases are recruited to modulate chromatin

accessibility to the transcriptional machinery. The histone acetyl-

transferases p300/CBP and PCAF act synergistically together with

NICD and RBPJ to acetylate different residues within the histone

tails, resulting in a transcriptionally activated chromatin status [84].

Overlaid on this basic on–off switch is a complex network of epi-

genetic regulatory mechanisms that modulate gene expression

depending on context. Although there has been relatively little

investigation of these regulatory networks in the mammalian intes-

tine, it was expected that epigenetic regulation of Notch signalling

would involve selective chromatin accessibility depending on the

transcriptional program of the committed cell type, similar to other

systems. However, recent work from Kim and colleagues [85] has

suggested that in the case of the intestinal crypt, a broadly open

chromatin structure in most progenitor cells allows flexibility in cell

fate assignment based on the rapidly changing needs of the tissue.

They found comparable levels of H3K4me2 and H3K27Ac histone

marks, indicating a permissive chromatin status, at most cis-

transcriptional enhancer loci in both secretory and absorptive

progenitors. Enhancers acting uniquely in progenitors were already

marked in Lgr5-positive stem cells, suggesting early priming of chro-

matin for divergent transcriptional programs, and the marks were

retained after lineage specification. On this chromatin background,

the secretory-specific transcription factor Atoh1 was sufficient to

determine two different final fates of “equally chromatinised”

progenitors: differentiation of some of the progenitor cells towards

the secretory fate by activating transcription of secretory genes and

diversion of neighbouring cells from this fate by lateral inhibition

via upregulation of Notch ligands [85]. The direct transcriptional

upregulation of Notch ligands by Atoh1 in Notch-low cells adds to

the previously known repression of ligand genes in Notch-high cells

and thus reinforces lateral inhibition.

Lateral inhibition deregulation in intestinal inflammation
and cancer

Inflammation

Pathological inflammation in the intestine typically results from

damage either to the mucus barrier or to the integrity of the under-

lying intestinal epithelium, leading to inappropriate contact with

micro-organisms and immune response. This damage can be caused

by acute infection, radiation injury or inflammatory bowel disorders

such as Crohn’s disease or ulcerative colitis. Because of its twin

roles in secretory cell production and proliferation of intestinal

epithelial cells, Notch signalling affects both the susceptibility to

inflammation and the recovery from it (Fig 3). Mutations or deregu-

lation in Notch pathway components can cause insufficient or

immature secretory cell production, reducing the effectiveness of

the mucous barrier and increasing the vulnerability to inflamma-

tion. For example, abnormal expression of Hes1 and repression of

Atoh1 are associated with goblet cell depletion in ulcerative colitis

[86]. In murine models of colitis [typically treatment with dextran

sodium sulphate (DSS)], Notch is activated in the inflamed mucosa

to stimulate cellular proliferation and regeneration of the tissue.

When this process is disrupted, for example by deleting RBPJ in the

intestinal epithelium, mice develop chronic colitis [87]. Abnormally

activated Notch leading to insufficient mucus production can also

impair recovery from induced colitis [88]. Interestingly, tight junc-

tions seem to link the barrier function of the epithelium and Notch

activation: overexpression of Claudin-1, a structural tight junction

component, in the intestinal epithelium activated Notch. The molec-

ular mechanism of this activation is not entirely clear but was found

to rely on the activity of the matrix metallopeptidase MMP9 [88].

Since Notch is also thought to induce MMP9 [89], this may be an

example of a positive feedback loop. A recent study has found that

deletion of Dclk1 (Dcamkl1), a marker of tuft cells [90], reduces

expression of both Claudin-1 and Notch1 and impairs epithelial

repair after radiation injury, which could fit with this link [91]. It

will be interesting to discover whether endogenous Claudin-1 is also

upregulated in models of induced inflammation, as a mechanism of

activating Notch signalling in response to damage. Although many

of the details are still to be worked out, it is clear that tight control

of Notch signalling is important to prevent and manage inflamma-

tion in the intestine, ensuring proper secretory cell production via

lateral inhibition, while stimulating tissue regeneration via Notch

activation.

Cancer

Unsurprisingly, given its crucial functions in both differentiation

and proliferation, inappropriate activation of the Notch signalling

pathway has been associated with the pathogenesis of colorectal

cancer (CRC) (Fig 3). Upregulation of Notch signalling pathway

components (Notch, Hes1 and downstream targets) has been

detected in intestinal adenomas in both human and mouse [37,92–

94]. Although activation of Wnt signalling by mutation of the APC

gene (APCmin/+) is sufficient to initiate intestinal adenomas

[29,30], Notch signalling promotes the development of adenomas

in APCmin/+ mice [95] and is essential for the self-renewal of

human colorectal tumour-initiating cells [96]. Furthermore, inhibit-

ing Notch cleavage by treatment with gamma-secretase inhibitors

dramatically decreases APCmin/+-induced tumour formation by
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promoting differentiation of intestinal progenitors and intestinal

tumour cells towards a secretory fate [37,97]. This finding high-

lights the importance of Notch signalling and lateral inhibition in

tumorigenic processes. However, because of the pleiotropic func-

tions of Notch, loss or inhibition of Notch signalling can be pro-

tumorigenic in other tissues such as skin and vasculature and

result in serious side effects [98,99], precluding the systemic use of

gamma-secretase inhibitors for colorectal cancer treatment.

Several examples demonstrate that disrupting or enhancing the

activity of regulators of the lateral inhibition network is key in intes-

tinal tumourigenesis. As described above, one of the mechanisms

regulating Notch levels relies on its ubiquitination by different E3

ligases and subsequent degradation. Fbw7 is the best characterised

E3 ligase regulating Notch in the intestinal tissue. Fbw7 loss-of-function

mutations are observed in 10% of human CRC [28]. Furthermore, in

an APCmin/+ background, loss of Fbw7 causes very aggressive

adenocarcinomas by promoting self-renewal in the crypt cells

and by inhibiting differentiation towards a secretory fate [72].

Interestingly, Fbw7 is haploinsufficient for APCmin/+-induced

tumourigenesis and NICD1 protein degradation, suggesting that a

small deregulation in Notch regulators can be amplified by the

multiple regulatory loops of lateral inhibition [75].

While restoring the activity of Fbw7 in tumours would be

difficult, an alternative could be to inhibit the function of its associ-

ated deubiquitinase, Usp28. Genetic deletion of Usp28 in the

intestinal epithelium reduces NICD levels and increases goblet cell

differentiation in APCmin/+ tumours, consistent with an inhibition

of Notch signalling [77]. Moreover, inducible deletion of Usp28 in

established APCmin/+ tumours slows their progression and

increases the lifespan of affected mice [77]. Further work will be

needed to determine whether chemical inhibition of Usp28 is

possible and whether the desired tumour-suppressive outcomes

can be achieved in vivo. Once again, a balance must be achieved

in disrupting the excessive activation of Notch that leads to

intestinal overproliferation, while preserving the essential and

sometimes tumour-suppressive functions of Notch signalling

within normal tissues.

Conclusion and outlook

The multiple uses of Notch signalling within metazoan tissues

continue to be revealed, more than 70 years after the “notched” wing

phenotype was first noted in Drosophila melanogaster. Although the

relative simplicity of the canonical Notch pathway compared with

other cell signalling mechanisms was striking (described in 1998 as a

“short cut to the nucleus” [100]), the capacity of Notch signalling for

intercellular communication and sensitivity to multiple levels of regu-

lation and feedback inevitably mean that its outputs are varied and

complex. In the mammalian intestine, Notch signalling is essential

for the self-renewal and proper differentiation of the intestinal epithe-

lium. Its characteristic property of lateral inhibition has been co-

opted to regulate the arrangement of mixed cell populations: stem

cells within the Paneth cell niche at the crypt base, and secretory

cells amongst the absorptive lineage cells of the transit-amplifying

compartment and villus. Disruption of these cell fate-determining

and regenerative mechanisms can lead to inflammatory disorders

and cancer. Although modulating such a fundamental pathway is

never straightforward, understanding the more subtle regulatory

mechanisms that influence Notch signalling should help us to iden-

tify more precise therapeutic targets. The recent findings in the gut

system described here may also facilitate the elucidation of Notch-

mediated mechanisms in other species and tissues.
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Sidebar A: Some important unanswered questions in the field

(i) What are the sources of Notch ligand in the crypt base stem
cell niche?

The Notch ligands Dll1 and Dll4 have been shown to be crucial for
maintenance of the stem cell niche [45], but the Paneth cells, a known
source of these ligands, have been shown to be dispensable in vivo
[20,21]. However, in these studies, the need for Notch signalling is
largely bypassed by Atoh1 deletion, and others have argued that
Paneth cells do contribute to the stem cell niche in wild-type animals
[19,22]. Secretory progenitors located immediately above the niche that
express Dll1 [13,46], or possibly underlying mesenchymal cells, are
potential alternative sources of Notch ligand.

(ii) Is Notch signalling required for facultative as well as CBC
stem cell function?

Two of the cell types proposed as facultative stem cells, which can
move down into the crypt base and take over the function of CBC
stem cells during regeneration, are secretory progenitors—a Notch-
low state [12,13]. It has been shown that these re-express Lgr5 when
“recalled” to the crypt base, but do they also return to a Notch-high
state and re-express Olfm4? If so, how is Notch activated? To what
extent is the change in location to the crypt base “niche” required for
plasticity?

(iii) Does Notch signalling in the intestine provide new clues for
other tissues/systems?

As reviewed here, the Notch signalling pathway is a widely conserved
pathway that regulates cellular identity, proliferation and differentia-
tion via the process of lateral inhibition. The core components of
Notch signalling have been shown to be conserved and essential in
different tissues such as the central nervous system, lung and haemat-
opoietic system as well as the intestine [101–103]. The intestinal
model has recently provided new examples of Notch signalling regula-
tors (Fig 3). Whether these regulatory mechanisms are also shared in
the different tissues or are specific to the intestine remains to be
elucidated.

(iv) Is Notch stability suitable for therapeutic targeting?
Increased Notch signalling is associated with different intestinal
disease conditions (see Fig 3), thus making Notch a potential therapeu-
tic target. So far, the only clinically available drugs are gamma-secre-
tase inhibitors, which inhibit Notch cleavage. However, the new
regulatory steps in the Notch pathway identified in the intestine (Fig 3)
provide additional druggable targets (e.g. DUBs) that could be useful
not only in the intestine but also in other systems. It remains to be
seen whether modulation of protein stability can overcome some of
the side effects associated with systemic Notch inhibition.
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